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Kim & Gu (2004) developed a simple random sampling approach for basis function selection
and established a coherent theory for the convergence of their approximated smoothing splines.
To overcome the computational burden of smoothing splines, pseudosplines (Hastie, 1996) and
penalized splines (Ruppert et al., 2003) have also been proposed. Both use a small number of
fixed basis functions to approximate the smoothing splines; they are similar in spirit to Gu &
Kim (2002) and Kim & Gu (2004) but differ in the construction of the basis functions.

In this paper, extending the simple random sampling approach of Gu & Kim (2002) and
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3·3. Efficient computation

We now present the details of the computational algorithm when adaptive basis sampling is
used to compute the smoothing spline estimator. Recall that the selected data points are denoted
by x∗ = (x∗

1 , . . . , x∗
n∗)T. Under adaptive basis sampling, the minimizer of (2) is approximated by

ηA(x) =
m∑

k=1

dkξk(x) +
n∗∑
j=1

c j RJ (x∗
j , x).

We let S denote the n × m matrix with (i, j)th entry ξ j (xi ). Let R∗ be a n × n∗ matrix with
the (i, j)th entry RJ (xi , x∗

j ) and R∗∗ be a n∗ × n∗ matrix with the (i, j)th entry RJ (x∗
i , x∗

j ).
If we rearrange the original data by putting the selected data points x∗ at the front, R∗ is just
the left part of R while R∗∗ is the top-left corner of R. The evaluations of ηA at locations x ,
ηthe �j( j(xjρρ�
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3. a 4-d additive function, η(x) = ηblocks(x〈1〉, x〈2〉) + ηcopula(x〈3〉, x〈4〉), where ηblocks and
ηcopula are as in set-ups 1 and 2;

4. a 6-d copula function, the function given in (10), with p = 6 and α j = 0·1 for all j . The
domain of interest is [−1, 1]6.

For all four settings, we computed the smoothing spline estimator using the full basis, and
using the bases chosen by adaptive basis sampling and uniform basis sampling. For adaptive
basis sampling, the number of slices was chosen based on the Scott (1992
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Table 1. Means and standard errors (in parentheses) of computational time, in seconds, for
four multivariate cases, based on 100 simulation runs

True function SNR Full basis UBS ABS FBPS

2d blocks 10 399 (12) 5·20 (0·12) 5·14 (0·10) 1·38 (0·03)
2 408 (9) 7·16 (0·35) 6·40 (0·23) 1·41 (0·02)
0·4 361 (7) 5·00 (0·17) 4·99 (0·17) 1·51 (0·02)

2d copula 10 260 (3) 6·56 (0·20) 6·41 (0·21) 1·63 (0·03)
2 301 (6) 6·86 (0·18) 6·71 (0·33) 1·59 (0·03)
0·4 317 (8) 4·69 (0·16) 4·79 (0·14) 1·58 (0·03)

4d blocks + copula 10 1247 (26) 15·16 (0·60) 13·84 (0·59) –
2 1222 (25) 16·62 (0·96) 15·54 (0·76) –
0·4 1135 (19) 13·16 (0·66) 13·27 (0·60) –

6d copula 10 9336 (223) 162·88 (7·27) 145·14 (7·32) –
2 9572 (283) 179·12 (7·52) 181·27 (6·60) –
0·4 7639 (161) 143·10 (6·80) 135·01 (6·81) –

SNR, signal-to-noise ratio; UBS, uniform basis sampling; ABS, adaptive basis sampling; FBPS, fast bivariate
P-splines.

strip. At each depth and location, the point images constructed contain many noisy replicates
resulting from different reflection angles of the seismic waves, so further statistical analysis is
necessary to estimate the true image. In order to be computationally feasible, they estimated
the true image using smoothing splines at each location and interpolated the estimated images
from all locations to get the three-dimensional image. The image shows peaks of very different
magnitudes at several unexpected locations (van der Hilst et al., 2007).

In this section, we apply a smoothing spline with adaptive basis sampling directly to all point
images to estimate the three-dimensional image. We let yi j denote the point image at the i th
distance, x〈1〉, and the j th depth, x〈2〉. We consider the following model for the point images

yi j = η(x〈1〉i , x〈2〉 j ) + εi j .

Since the sample size is n = 163 713, the regular tensor-product smoothing spline is computa-
tionally prohibitive. Instead, we apply our cubic tensor-product smoothing spline with adaptive
basis sampling to the dataset with K = 10 slices and let the dimension of the effective model
space be n∗ = 155. Define k1(u) = u − 0·5,

k2(x) = 1

2

{
k2

1(x) − 1

12

}
, k4(x) = 1

24

{
k4

1(x) − k2
1(x)

2
+ 7

240

}
,

and R(u1, u2) = k2(u1)k2(u2) − k4(|u1 − u2|). The cubic tensor-product smoothing spline esti-
mator with adaptive basis sampling has the form

η(x) =
4∑

ν=1

dνφν(x) +
n∗∑
j=1

c j RJ (x∗
j , x),
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